Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Viruses ; 15(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2216942

RESUMEN

Zika virus (ZIKV) is an RNA-enveloped virus that belongs to the Flavivirus genus, and ZIKV infections potentially induce severe neurodegenerative diseases and impair male fertility. Palmitoylation is an important post-translational modification of proteins that is mediated by a series of DHHC-palmitoyl transferases, which are implicated in various biological processes and viral infections. However, it remains to be investigated whether palmitoylation regulates ZIKV infections. In this study, we initially observed that the inhibition of palmitoylation by 2-bromopalmitate (2-BP) enhanced ZIKV infections, and determined that the envelope protein of ZIKV is palmitoylated at Cys308. ZDHHC11 was identified as the predominant enzyme that interacts with the ZIKV envelope protein and catalyzes its palmitoylation. Notably, ZDHHC11 suppressed ZIKV infections in an enzymatic activity-dependent manner and ZDHHC11 knockdown promoted ZIKV infection. In conclusion, we proposed that the envelope protein of ZIKV undergoes a novel post-translational modification and identified a distinct mechanism in which ZDHHC11 suppresses ZIKV infections via palmitoylation of the ZIKV envelope protein.


Asunto(s)
Flavivirus , Infección por el Virus Zika , Virus Zika , Humanos , Masculino , Anticuerpos Antivirales/metabolismo , Flavivirus/metabolismo , Proteínas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Virus Zika/fisiología
2.
J Mol Biol ; 434(6): 167277, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2061566

RESUMEN

Establishment of the interferon (IFN)-mediated antiviral state provides a crucial initial line of defense against viral infection. Numerous genes that contribute to this antiviral state remain to be identified. Using a loss-of-function strategy, we screened an original library of 1156 siRNAs targeting 386 individual curated human genes in stimulated microglial cells infected with Zika virus (ZIKV), an emerging RNA virus that belongs to the flavivirus genus. The screen recovered twenty-one potential host proteins that modulate ZIKV replication in an IFN-dependent manner, including the previously known IFITM3 and LY6E. Further characterization contributed to delineate the spectrum of action of these genes towards other pathogenic RNA viruses, including Hepatitis C virus and SARS-CoV-2. Our data revealed that APOL3 acts as a proviral factor for ZIKV and several other related and unrelated RNA viruses. In addition, we showed that MTA2, a chromatin remodeling factor, possesses potent flavivirus-specific antiviral functions induced by IFN. Our work identified previously unrecognized genes that modulate the replication of RNA viruses in an IFN-dependent manner, opening new perspectives to target weakness points in the life cycle of these viruses.


Asunto(s)
Flavivirus , Interferones , Replicación Viral , Apolipoproteínas L/genética , Apolipoproteínas L/metabolismo , Flavivirus/fisiología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Interferones/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , SARS-CoV-2/fisiología , Virus Zika/fisiología
3.
Viruses ; 13(11)2021 10 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1488755

RESUMEN

Understanding the dynamic relationship between viral pathogens and cellular host factors is critical to furthering our knowledge of viral replication, disease mechanisms and development of anti-viral therapeutics. CRISPR genome editing technology has enhanced this understanding, by allowing identification of pro-viral and anti-viral cellular host factors for a wide range of viruses, most recently the cause of the COVID-19 pandemic, SARS-CoV-2. This review will discuss how CRISPR knockout and CRISPR activation genome-wide screening methods are a robust tool to investigate the viral life cycle and how other class 2 CRISPR systems are being repurposed for diagnostics.


Asunto(s)
Sistemas CRISPR-Cas , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/virología , Coronavirus/genética , Edición Génica , Infección por el Virus Zika/virología , Virus Zika/genética , COVID-19/diagnóstico , COVID-19/virología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Enfermedades Transmisibles Emergentes/diagnóstico , Coronavirus/fisiología , Infecciones por Coronavirus/diagnóstico , Interacciones Huésped-Patógeno , Humanos , SARS-CoV-2/genética , Virus Zika/fisiología , Infección por el Virus Zika/diagnóstico
4.
Nat Immunol ; 22(11): 1416-1427, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1475314

RESUMEN

Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced during infections and involved in host defense mechanisms. Not surprisingly, many viruses encode deISGylating activities to antagonize its effect. Here we show that infection by Zika, SARS-CoV-2 and influenza viruses induce ISG15-modifying enzymes. While influenza and Zika viruses induce ISGylation, SARS-CoV-2 triggers deISGylation instead to generate free ISG15. The ratio of free versus conjugated ISG15 driven by the papain-like protease (PLpro) enzyme of SARS-CoV-2 correlates with macrophage polarization toward a pro-inflammatory phenotype and attenuated antigen presentation. In vitro characterization of purified wild-type and mutant PLpro revealed its strong deISGylating over deubiquitylating activity. Quantitative proteomic analyses of PLpro substrates and secretome from SARS-CoV-2-infected macrophages revealed several glycolytic enzymes previously implicated in the expression of inflammatory genes and pro-inflammatory cytokines, respectively. Collectively, our results indicate that altered free versus conjugated ISG15 dysregulates macrophage responses and probably contributes to the cytokine storms triggered by SARS-CoV-2.


Asunto(s)
COVID-19/inmunología , Citocinas/metabolismo , Inflamación/inmunología , Macrófagos/inmunología , SARS-CoV-2/fisiología , Ubiquitinas/metabolismo , Diferenciación Celular , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Citocinas/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Evasión Inmune , Inmunidad Innata , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Células Madre Pluripotentes/citología , Ubiquitinación , Ubiquitinas/genética , Virus Zika/fisiología , Infección por el Virus Zika/inmunología
5.
ChemMedChem ; 16(23): 3548-3552, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1400781

RESUMEN

Over half a century since the description of the first antiviral drug, "old" re-emerging viruses and "new" emerging viruses still represent a serious threat to global health. Their high mutation rate and rapid selection of resistance toward common antiviral drugs, together with the increasing number of co-infections, make the war against viruses quite challenging. Herein we report a host-targeted approach, based on the inhibition of the lipid kinase PI4KIIIß, as a promising strategy for inhibiting the replication of multiple viruses hijacking this protein. We show that bithiazole inhibitors of PI4KIIIß block the replication of human rhinoviruses (hRV), Zika virus (ZIKV) and SARS-CoV-2 at low micromolar and sub-micromolar concentrations. However, while the anti-hRV/ZIKV activity can be directly linked to PI4KIIIß inhibition, the role of PI4KIIIß in SARS-CoV-2 entry/replication is debated.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Antivirales/farmacología , Inhibidores Enzimáticos/química , Rhinovirus/fisiología , SARS-CoV-2/fisiología , Tiazoles/química , Replicación Viral/efectos de los fármacos , Virus Zika/fisiología , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Antivirales/química , Antivirales/metabolismo , COVID-19/patología , COVID-19/virología , Línea Celular , Estabilidad de Medicamentos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , SARS-CoV-2/aislamiento & purificación , Tiazoles/metabolismo , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/patología
6.
Biomolecules ; 11(5)2021 05 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1389275

RESUMEN

Several RNA viruses, including SARS-CoV-2, can infect or use the eye as an entry portal to cause ocular or systemic diseases. Povidone-Iodine (PVP-I) is routinely used during ocular surgeries and eye banking as a cost-effective disinfectant due to its broad-spectrum antimicrobial activity, including against viruses. However, whether PVP-I can exert antiviral activities in virus-infected cells remains elusive. In this study, using Zika (ZIKV) and Chikungunya (CHIKV) virus infection of human corneal and retinal pigment epithelial cells, we report antiviral mechanisms of PVP-I. Our data showed that PVP-I, even at the lowest concentration (0.01%), drastically reduced viral replication in corneal and retinal cells without causing cellular toxicity. Antiviral effects of PVP-I against ZIKV and CHIKV were mediated by direct viral inactivation, thus attenuating the ability of the virus to infect host cells. Moreover, one-minute PVP-I exposure of infected ocular cells drastically reduced viral replication and the production of infectious progeny virions. Furthermore, viral-induced (CHIKV) expression of inflammatory genes (TNF-α, IL-6, IL-8, and IL1ß) were markedly reduced in PVP-I treated corneal epithelial cells. Together, our results demonstrate potent antiviral effects of PVP-I against ZIKV and CHIKV infection of ocular cells. Thus, a low dose of PVP-I can be used during tissue harvesting for corneal transplants to prevent potential transmission of RNA viruses via infected cells.


Asunto(s)
Antivirales/farmacología , Povidona Yodada/farmacología , Virus ARN/fisiología , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Virus Chikungunya/fisiología , Chlorocebus aethiops , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/virología , SARS-CoV-2/fisiología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Células Vero , Virus Zika/fisiología
7.
Science ; 373(6551): 231-236, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1304152

RESUMEN

In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses-including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.


Asunto(s)
ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Interferencia de ARN , Virus ARN/fisiología , ARN Viral/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Células Madre/enzimología , Células Madre/virología , Empalme Alternativo , Animales , Encéfalo/enzimología , Encéfalo/virología , Línea Celular , ARN Helicasas DEAD-box/química , Humanos , Inmunidad Innata , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Organoides/enzimología , Organoides/virología , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Virus ARN/genética , Virus ARN/inmunología , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/química , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Replicación Viral , Virus Zika/genética , Virus Zika/inmunología , Virus Zika/fisiología , Infección por el Virus Zika/enzimología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
8.
BMC Med Res Methodol ; 21(1): 50, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1133581

RESUMEN

BACKGROUND: Outbreaks of infectious diseases generate outbreaks of scientific evidence. In 2016 epidemics of Zika virus emerged, and in 2020, a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic of coronavirus disease 2019 (COVID-19). We compared patterns of scientific publications for the two infections to analyse the evolution of the evidence. METHODS: We annotated publications on Zika virus and SARS-CoV-2 that we collected using living evidence databases according to study design. We used descriptive statistics to categorise and compare study designs over time. RESULTS: We found 2286 publications about Zika virus in 2016 and 21,990 about SARS-CoV-2 up to 24 May 2020, of which we analysed a random sample of 5294 (24%). For both infections, there were more epidemiological than laboratory science studies. Amongst epidemiological studies for both infections, case reports, case series and cross-sectional studies emerged first, cohort and case-control studies were published later. Trials were the last to emerge. The number of preprints was much higher for SARS-CoV-2 than for Zika virus. CONCLUSIONS: Similarities in the overall pattern of publications might be generalizable, whereas differences are compatible with differences in the characteristics of a disease. Understanding how evidence accumulates during disease outbreaks helps us understand which types of public health questions we can answer and when.


Asunto(s)
COVID-19/prevención & control , Publicaciones/estadística & datos numéricos , Publicaciones/tendencias , SARS-CoV-2/aislamiento & purificación , Infección por el Virus Zika/prevención & control , Virus Zika/aislamiento & purificación , COVID-19/epidemiología , COVID-19/virología , Estudios de Casos y Controles , Estudios Transversales , Brotes de Enfermedades , Humanos , Pandemias , Publicaciones Periódicas como Asunto/estadística & datos numéricos , Publicaciones Periódicas como Asunto/tendencias , SARS-CoV-2/fisiología , Virus Zika/fisiología , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/virología
9.
PLoS Negl Trop Dis ; 15(3): e0009259, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1127761

RESUMEN

Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti, which is of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature, minimum temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable local knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts.


Asunto(s)
Fiebre Chikungunya/epidemiología , Dengue/epidemiología , Infección por el Virus Zika/epidemiología , Aedes/fisiología , Aedes/virología , Animales , Fiebre Chikungunya/economía , Fiebre Chikungunya/virología , Virus Chikungunya/fisiología , Clima , Colombia/epidemiología , Dengue/economía , Dengue/virología , Virus del Dengue/fisiología , Factores Económicos , Ecosistema , Humanos , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , América del Sur , Temperatura , Virus Zika/fisiología , Infección por el Virus Zika/economía , Infección por el Virus Zika/virología
10.
Viruses ; 13(1)2020 12 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1004758

RESUMEN

RNA viruses have gained plenty of attention during recent outbreaks of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Zika virus (ZIKV), and Ebola virus. ZIKV is a vector borne Flavivirus that is spread by mosquitoes and it mainly infects neuronal progenitor cells. One hallmark of congenital ZIKV disease is a reduced brain size in fetuses, leading to severe neurological defects. The World Health Organization (WHO) is urging the development of new antiviral treatments against ZIKV, as there are no efficient countermeasures against ZIKV disease. Previously, we presented a new class of host-targeting antivirals active against a number of pathogenic RNA viruses, such as SARS-CoV-2. Here, we show the transfer of the image-based phenotypic antiviral assay to ZIKV-infected brain cells, followed by mechanism-of-action studies and a proof-of-concept study in a three-dimensional (3D) organoid model. The novel antiviral compounds showed a therapeutic window against ZIKV in several cell models and rescued ZIKV-induced neurotoxicity in brain organoids. The compound's mechanism-of-action was pinpointed to late steps in the virus life cycle, impairing the formation of new virus particles. Collectively, in this study, we expand the antiviral activity of new small molecule inhibitors to a new virus class of Flaviviruses, but also uncover compounds' mechanism of action, which are important for the further development of antivirals.


Asunto(s)
Antivirales/farmacología , Encéfalo/metabolismo , Organoides/metabolismo , Infección por el Virus Zika/metabolismo , Virus Zika/efectos de los fármacos , Animales , Encéfalo/patología , COVID-19 , Supervivencia Celular/efectos de los fármacos , Humanos , Organoides/patología , Virus ARN , Ribavirina/farmacología , SARS-CoV-2 , Virus Zika/fisiología , Infección por el Virus Zika/virología
11.
Cell ; 184(1): 133-148.e20, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: covidwho-987228

RESUMEN

Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection, we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results, we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms present at nearly 20% in East Asian populations reduce flavivirus infection. Based on our mechanistic studies, we propose that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.


Asunto(s)
Infecciones por Flavivirus/genética , Flavivirus/fisiología , Proteínas de la Membrana/metabolismo , Animales , Pueblo Asiatico/genética , Autofagia , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Sistemas CRISPR-Cas , Línea Celular , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/metabolismo , Infecciones por Flavivirus/virología , Técnicas de Inactivación de Genes , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple , SARS-CoV-2/fisiología , Replicación Viral , Virus de la Fiebre Amarilla/fisiología , Virus Zika/fisiología
13.
Cells ; 9(11)2020 11 07.
Artículo en Inglés | MEDLINE | ID: covidwho-918180

RESUMEN

Viruses exhibit an elegant simplicity, as they are so basic, but so frightening. Although only a few are life threatening, they have substantial implications for human health and the economy, as exemplified by the ongoing coronavirus pandemic. Viruses are rather small infectious agents found in all types of life forms, from animals and plants to prokaryotes and archaebacteria. They are obligate intracellular parasites, and as such, subvert many molecular and cellular processes of the host cell to ensure their own replication, amplification, and subsequent spread. This special issue addresses the cell biology of viral infections based on a collection of original research articles, communications, opinions, and reviews on various aspects of virus-host cell interactions. Together, these articles not only provide a glance into the latest research on the cell biology of viral infections, but also include novel technological developments.


Asunto(s)
Virosis/patología , Animales , Betacoronavirus/fisiología , Interacciones Huésped-Patógeno , Humanos , SARS-CoV-2 , Transducción de Señal , Virosis/metabolismo , Virosis/virología , Virus Zika/fisiología
14.
Cell Rep ; 33(5): 108339, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: covidwho-898565

RESUMEN

Here, we report our studies of immune-mediated regulation of Zika virus (ZIKV), herpes simplex virus 1 (HSV-1), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the human cornea. We find that ZIKV can be transmitted via corneal transplantation in mice. However, in human corneal explants, we report that ZIKV does not replicate efficiently and that SARS-CoV-2 does not replicate at all. Additionally, we demonstrate that type III interferon (IFN-λ) and its receptor (IFNλR1) are expressed in the corneal epithelium. Treatment of human corneal explants with IFN-λ, and treatment of mice with IFN-λ eye drops, upregulates antiviral interferon-stimulated genes. In human corneal explants, blockade of IFNλR1 enhances replication of ZIKV and HSV-1 but not SARS-CoV-2. In addition to an antiviral role for IFNλR1 in the cornea, our results suggest that the human cornea does not support SARS-CoV-2 infection despite expression of ACE2, a SARS-CoV-2 receptor, in the human corneal epithelium.


Asunto(s)
Betacoronavirus/fisiología , Córnea/virología , Infecciones por Coronavirus/transmisión , Herpesvirus Humano 1/fisiología , Interferones/inmunología , Neumonía Viral/transmisión , Virus Zika/fisiología , Animales , Betacoronavirus/inmunología , COVID-19 , Córnea/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Herpes Simple/inmunología , Herpes Simple/transmisión , Herpes Simple/virología , Humanos , Ratones , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Replicación Viral/fisiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Interferón lambda
15.
Antiviral Res ; 182: 104874, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-891945

RESUMEN

Based on genome-scale loss-of-function screens we discovered that Topoisomerase III-ß (TOP3B), a human topoisomerase that acts on DNA and RNA, is required for yellow fever virus and dengue virus-2 replication. Remarkably, we found that TOP3B is required for efficient replication of all positive-sense-single stranded RNA viruses tested, including SARS-CoV-2. While there are no drugs that specifically inhibit this topoisomerase, we posit that TOP3B is an attractive anti-viral target.


Asunto(s)
Betacoronavirus/fisiología , ADN-Topoisomerasas de Tipo I/metabolismo , Virus ARN/metabolismo , Replicación Viral/fisiología , Línea Celular , Virus del Dengue/fisiología , Ebolavirus/fisiología , Técnicas de Inactivación de Genes , Humanos , Virus de la Influenza A/fisiología , SARS-CoV-2 , Virus de la Fiebre Amarilla/fisiología , Virus Zika/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA